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An experimental investigation of plane turbulent jets in bounded fluid layers is 
presented. The development of the jet is regular up to a distance from the orifice of 
approximately twice the depth of the fluid layer. From there on to a distance of 
about ten times the depth, the flow is dominated by secondary currents. The velocity 
distribution over a cross-section of the jet becomes three-dimensional and the jet 
undergoes a constriction in the midplane and a widening near the bounding surfaces. 
Beyond a distance of approximately ten times the depth of the bounded fluid layer 
the secondary currents disappear and the jet starts to meander around its 
centreplane. Large vortical structures develop with axes perpendicular to the 
bounding surfaces of the fluid layer. With increasing distance the size of these 
structures increases by pairing. These features of the jet are associated with the 
development of quasi two-dimensional turbulence. It is shown that the secondary 
currents and the meandering do not significantly affect the spreading of the jet. The 
quasi-two-dimensional turbulence, however, developing in the meandering jet, 
significantly influences the mixing of entrained fluid. 

1. Introduction 
In the present work we consider a fluid layer bounded by two parallel surfaces with 

a separation distance H ,  simply called the depth of the fluid layer. The bounding 
surfaces may be shear-supporting (no-slip) or shear-free. The fluid layer receives a 
high velocity discharge through a slot of width B that extends over the full depth H ,  
and an aspect ratio H / B  % 1. A plane turbulent jet with a Reynolds number 
Re,, = U,B/v > lo3, where U, is the exit velocity and v the kinematic viscosity, is 
generated in the fluid layer. The evolution of this jet flow for large streamwise 
distances, for which the jet half-width b exceeds the depth, b / H  > 1, is the subject 
of this study. 

There have been very few investigations into the behaviour of plane jets that 
occupy the region x / H  % 1. The absence of detailed studies of ' shallow-free jets ' and 
their large distance evolution, x / H  B 1, is particularly surprising as these conditions 
are, in fact, the standard case in many geophysical and environmental engineering 
applications. Industrial effluents, e.g. cooling water discharges or natural rivers 
issuing into shallow lakes or into the upper layer of deep lakes bounded below by a 
thermocline or into the coastal shelf zone, are all in the category x / H  % 1, with 
values ranging up to 100 and beyond. Tidal jets due to the periodic emptying of a 
coastal lagoon are another case, as are topographically induced jets in the stratified 
atmosphere . 

Foss & Jones (1968) and Holdemann & Foss (1975) studied shallow jets in fluidic 
switching devices in the limited range x / H  < 10. They found that secondary flow 
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structures develop at  some distance from the orifice and attribute them to vortex 
interaction between the free shear layers and the wall shear layers. In their 
experiments conducted with H / B  = 4 these secondary flows seem to be fully decayed 
at  a distance x / B  x 40. Beyond that distance the jet seems to return to the usual 
two-dimensional flow condition of a plane jet with a relatively thin boundary layer 
near the plates (Holdemann & Foss 1975). 

Usually, in studies of two-dimensional turbulent plane jets the effects of the 
bounding surfaces are undesirable. Measurements are therefore mostly limited to a 
distance from the orifice of the order of the separation between the bounding walls, 
i.e. x / H  - 1. In  the absence of wall effects and beyond an initial zone of flow 
establishment, a jet in self-preserving state begins to form. For such a jet an 
invariant local force equilibrium exists. All its properties, including turbulence 
intensities, can then be uniquely scaled with local variables, and the equations of 
motion can be simplified by using similarity techniques as shown by the early works 
of Tollmien (1926), Gortler (1942) and Reichardt (1942). 

The structure of the turbulence in the self-preserving zone of two-dimensional jets 
has been measured in a number of studies (e.g. Bradbury 1965; Goldschmidt & 
Young 1975; Gutmark & Wygnanski 1976; Everitt & Robins 1978; Bashir & Uberoi 
1975; Ramaprian & Chandrasekhara 1983). The turbulence in these flows is 
characterized by the three-dimensional vortex stretching mechanism and exhibits an 
equilibrium range with a -$ wavenumber dependence in the power spectrum. The 
dominant energy-containing eddies appear to be those typical for shear flow, that is 
to say, they have principal axes aligned with those of the mean strain rate (Townsend 
1976), even though there is disagreement about their exact geometry and orientation 
(e.g. Moum, Kawall & Keffer 1979; Mumford 1982). The ratio of integral scale to 
velocity half-width is estimated to be about 0.3 (Bradbury 1965) to 0.5 (Goldschmidt 
& Bradshaw 1981). 

Coherent structures within the plane jet have their origin in the unstable mixing 
layers that develop immediately downstream from the efflux. The nonlinear growth, 
two-dimensional interaction (pairing) and three-dimensional secondary instabilities 
in such mixing layers have been convincingly demonstrated (e.g. Winant & Browand 
1974 ; Jimenez 1983). 

For sufficiently large distances and for high Reynolds numbers (Foss 1977; Hussain 
& Zedan 1978) the structures are generally imbedded into, and interacting with, the 
three-dimensional turbulence field of the mixing layers and - after their lateral 
merging - of the plane jet. Their detection and eduction then becomes a matter of 
considerable art and subjectivity leading to frequently contradictory conclusions. 
Reliable experimental methods are still evolving. Two-point velocity correlations on 
opposite jet sides by Cervantes & Goldschmidt (1983) showed an apparent flapping 
motion, which was attributed to local (apparently two-dimensional) coherent 
structures within the jet’s turbulence field (see also Mumford 1982). More detailed 
spatial correlation measurements by Oler & Goldschmidt ( 1982) and visualizations 
by Goldschmidt, Moallemi t Oler (1983) suggest a ‘two-dimensional vortex street ’ 
structure. Space-time correlations of velocity and of tracer fluctuations by Antonia 
et al. (1983) also demonstrated the existence of spanwise counter-rotating structures. 
In contrast, measurements by Moum et al. (1979, 1983) supported the occurrence of 
large-scale ‘ randomly occurring ’ coherent structures, but found no correlation 
between opposite sides. Hussain (1983)’ in turn, detected three-dimensional 
structures that have both streamwise and spanwise vorticities quite different from 
the ones of other studies. Recent work by Thomas t Goldschmidt (1986) gives 
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FIGURE 1. Schematic plane view of experimental set-up. W, water table; P, pump; R, constant 
head reservoir; V, valves ; 0, jet-orifice ; F, lateral feeders ; M, flowmeters. Dimensions are given in 
metres. 

further evidence for the co-existence of different structure types in the downstream 
region of the plane jet. 

In short, available evidence suggests that the two-dimensional turbulent jet, in 
the absence of effects of the third dimension, i.e. in practice, for x / H  < 1, is in the 
main governed by a three-dimensional vorticity transfer mechanism with a well- 
established equilibrium range. Furthermore, large-scale organized motions seem to 
occur, but considerable uncertainty exists with regard to their spatial and temporal 
structures. 

In contrast to the existing body of knowledge on plane turbulent jets, in which the 
influence of the bounding surface is either absent or minimal, the present study on 
jets in shallow fluid layers demonstrates flow behaviour that differs in many aspects, 
often radically so. Section 2 provides a description of the experimental apparatus. A 
new subdivision of the plane jet into a near, middle and far field, which is based on 
the depth as a scaling parameter, is introduced in $3 of this paper. Mean flow 
properties of the shallow jet in the near, middle and far field are summarized in $4. 
The turbulent structure in the far field ( x / H  2 10) ($5 )  is dominated by two- 
dimensional kge-amplitude quasi-periodic motions which give it the appearance of 
a 'meandering jet '. Spectral and intermittency characteristics of the flow are 
provided in $5 6 and 7. 

2. Experimental apparatus 
Figure 1 shows a schematic sketch of the experimental apparatus. The experiments 

were conducted on a horizontal water .table with a streamwise extent of 1.80 m and 
a width of 2.8 m. At the downstream end, the water table is open to a large receiving 
basin of 5 m x 6 m with a depth of 1 m. A flat horizontal plate extends the water table 
an additional 1.25 m into this basin so that the total longitudinal distance over which 
the shallow jet can be observed is 3.05 m. 

The water jet was discharged through a vertical slot which issues at  the upstream 
end of the water table. In  all experiments performed the slot width B was equal to 
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FIGURE 2. Definition sketch for plane jet into bounded fluid layer. 

1 cm and the jet had a nominal exit velocity of 110 cm/s resulting in a Reynolds 
number of about lo4 at the orifice. Two different nozzles were used. The first nozzle 
was bottle-shaped with a contraction of 10: 1.  The downstream end of the nozzle 
consisted of a 10 mm long section with parallel sidewalls. The contraction ratio of the 
second nozzle was 22: 1.  It was achieved by a single curvature of 10 mm radius. 
Pressure measurements showed that a vena contracta did not occur after either of 
the two nozzles. The height of the slot was equal to the water depth H over the water 
table. This depth was varied in the range 20-360 mm or H/B = 2-36. A glass plate 
forms the bottom of the water table while the top is provided by another removable 
glass plate or simply by the shear-free water surface. 

Definitions and notations used in this study are shown in figure 2. Jet  entrainment 
induces a potential flow in the receiving fluid body. Theoretically, this fluid body 
should have an infinite lateral extent. To approximately satisfy this condition in the 
laterally confined water table, water was supplied on both sides of the table through 
perforated pipes at a rate corresponding to the estimated entrainment rate. The flow 
field in the receiving water body was visualized and compared with Taylor's solution 
(Taylor 1958) for the flow induced by the entrainment of the jet. The agreement was 
excellent. This investigation was carefully carried out before starting the proper 
measurements and showed that an influence of the lateral discharge supply on the jet 
flow can be excluded in the range of the operating conditions of the experiments 
conducted in this facility (for more details see Giger 1987 ; Giger, Dracos & Jirka 
1991). The sum of the jet discharge and the lateral feeding flow was withdrawn at the 
downstream end of the main basin in order to maintain a constant water level. 

Flow visualizations were made by means of dye continuously injected into the jet 
efflux. Additionally, confetti was put on the free surface in some experiments. 
Photographic observations were carried out by a single-picture camera or a movie 
camera mounted overhead. 

Velocity measurements were performed using laser-Doppler anemometry (LDA) 
with a vertical beam alignment for the two horizontal velocity components u and v. 
A special LDA platform was constructed with the emitting optics located below the 
water table and the receiving optics above. A 15 mW helium-neon-laser was used as 
light source. Two focusing lenses with a nominal focusing distance of 200 and 300 mm 
were used alternatively to focus the three light beams in a measuring volume. 
Movement of the platform allowed three-dimensional positioning of the measuring 
volume. This volume had a vertical dimension of 1.8 mm and a horizontal one of 
0.07 mm for the first lens, and 4.0/0.15 mm respectively for the second lens. The 
frequency shift necessary for a correct determination of the sign of the velocity 
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vector was accomplished by a rotating optical grid. Imperfection of the grid resulted 
in a periodic ripple superimposed on the measuring signal. The use of a phase-locked 
loop enabled a synchronous sampling so that the negative effect of this ripple could 
be reduced to a minimum. A tracker was used to process the Doppler signal. The 
angle formed by two of the laser light beams in each of the two measuring planes and 
a proportionality constant are needed to compute the two velocity components from 
the measured signals. These constants were determined by a special calibration 
procedure, which was repeated periodically during the measurements. For more 
details of the LDA system used see Muller (1980). 

The data were low-pass filtered at  a cut-off frequency of 100 Hz, sampled through 
an l l-bit  A/D-converter at  a rate of 212 Hz and digitally recorded. The whole 
process was controlled by a PDP- 11/34 computer. The measuring time was variable 
in streamwise distance and increased according to the similarity law of the plane jet 
from 60 s at  x / B  = 20 to 1200 s at  x/B = 153. The rough data were stored first on 
RK05-disc and then transferred to a VAX-8650 computer for further processing. 

3. The depth as scaling parameter for the flow classification in shallow 
plane jets 

Figure 3(a) shows a dimensionless distribution of the turbulence intensity of the 
u-velocity component versus the streamwise distance x .  The local mean velocity 
Urn on the jet axis was chosen as the scaling velocity. The abscissa was scaled in the 
usual way with the slot width B since it is the appropriate length scale for a two- 
dimensional jet, namely 5 = x / B .  Data are shown for the experiments described in 
the present work and from the study of Holdemann & Foss (1975). The experiments 
differ only in the water depth H. The data of each experiment follow different curves. 
With the exception of the experiment with H / B  = 4, these curves show a common 
general trend: an initial increase in the intensity ends in a peak followed by a 
subsequent decrease down to a more or less constant plateau. Figure 3 (b) shows the 
same sets of data, but with the abscissa scaled with H instead of B. This scaling 
makes the data collapse onto a single curve. They show some scatter, but have a peak 
near f" = 6, and the constant plateau begins near f" = 10. Beyond that point, the 
data of the experiment with H / B  = 4 coincide with the data of the other experiments. 
When scaled the same way, the data of Holdemann & Foss (1975) show the same 
trend and are in remonable agreement with the data of the present work. 

From figure 3 ( b )  it is concluded that the streamwise turbulent intensity is 
approximately constant for distances greater than about 10 times the depth H. The 
level of the turbulence intensity for f" > 10, where f" = x / H ,  is close to 0.2. The 
region f" < 10 is influenced by a pronounced secondary flow of the second type. Foss 
& Jones (1968) and Holdemann & Foss (1975) have performed comprehensive 
measurements in this zone. The main effect of the secondary currents consists in a 
transport of fast jet fluid from the axis towards the boundaries along the centreplane 
and of slow ambient fluid towards the axis of the jet along the midplane. This 
transport causes a deficit of momentum flux in the midplane. For this reason the 
turbulence intensity peak in figure 3(b) is partially an apparent one, i.e. part of the 
increme is a consequence of scaling the intensity with a velocity Urn which is not 
representative of the momentum flux in the entire cross-section. Most of the previous 
experimental studies were limited to the region f" < 5.  In  this region the turbulence 
intensity apparently rises to a maximum of 0.3. 

The present study suggests that the streamwise region of the jet, that is influenced 
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FIGURE 3. (a) Turbulence intensity of the u-component of the velocity along the axis of the jet as 
a function of 4 = x/B. ( b )  Same quantity presented as a function of 5' = x/H. 0, HfB = 4; A, 
HIB = 8; 0,  HIB = 12; V, HIB = 16; 0, HIB = 36; X ,  Holdemann BE Foss (1975), H/B = 4. 

by secondary currents with rollers essentially oriented in the x-direction, scales with 
the depth H of the flow. The effect of the secondary currents is maximal at E' - 6 and 
becomes vanishingly small beyond 5' - 10. As shown in figure 4 the extent of the 
zone influenced by secondary currents is of the same order for a solid and for a shear- 
free upper boundary. 

The influence of the water depth on the development of the jet can also be seen in 
visual observations. Figure 5 shows six instantaneous pictures (exposure time & s) of 
the dyed jet at water depths H / B  between 2 and 36. All other experimental 
parameters were kept constant. The range of the jet depicted in all six pictures 
extends from 6 = 0 to 6 = 300 where 6 = x/B. For comparison, the distance x = 1OH 
is marked in each picture, except for the one from the experiment with depth 
H/B = 36, in which the visible segment of the jet is limited to 8H. 
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RGIJRE 4. Turbulence intensity of the u-component along the axis of the jet, H/B = 8 ; 

A, no-slip upper boundary surface; A, shear-free upper bounding surface. 

The photo in figure 5(a)  was taken in an experiment with depth H/B = 36 and 
shows the typical behaviour of an unbounded two-dimensional jet with an 
approximately linear spread of the dye. Decreasing the depth of the water layer does 
not alter the situation described above within the region 5' < 10 (see figures 5 (b) and 
5 (c), in particular). Approximately at the point which corresponds to a local aspect 
ratio b / H  N 1, a slight undulation of the entire jet first appears. This perturbation 
grows rapidly and coherently over the full depth. At about f' N 15-20 a mature 
'meandering jet '  form has developed. Within the range of our observations, the 
meandering motion seems to be preserved for yet larger distances. The only 
exception is found at the farthest distances for H/B = 2 (figure 5f), i.e. E' 2 120, at 
which some breakdown of the meandering motion seems to occur. This must be seen 
as the upper limit of validity for all the following considerations. The meandering jet 
is connected to a series of large two-dimensional vortical structures with an 
alternating sense of rotation which grow at the same rate as the overall growth of the 
jet. The structure of the flow is discussed later. 

By installing a top glass plate rather than maintaining a free surface, the dynamic 
effect of a second bounding wall appears to  have little effect on the generation and 
growth of the meandering motion. The apparent onset of the meandering begins in 
both cases at  5' m 10. 

Thus, using the water depth tw the appropriate scaling parameter, a subdivision of 
the shallow plane jet into a near, a middle and far field is proposed. 

The near field extends from 5' = 0 to f' x 2. The flow behaves like a classical two- 
dimensional jet, where no significant influence of boundaries is felt in the jet proper. 
Measurements performed in the midplane are consequently representative for the 
bulk properties of the jet. Provided the slot width B is smaller than about @, the 
near field can be subdivided in the usual way into a core zone, a transition zone and 
a zone with a fully developed flow. 

The middle &ld extends from 5' x 2 to 5' m 10. The secondary currents which 
occur in the middle field affect the jet flow over the whole depth. Measurements 
which are performed in the midplane are no longer representative for the jet bulk 
properties. 
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FIQURE 5. Instantaneous photographs of the jet (exposure time iifis) for: (a)  H/B = 36, (b)  
H/B = 16, (c )  H/B = 12, ( d )  H/B = 8,  ( e )  H/B = 4, (f) H/B = 2.  Solid bars are the support 
structure for the LDA system. Spacing between tick marks equals 30 cm or 30B. 
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The term far$eZd refers to distances greater than about 10 times the depth H .  The 
most conspicuous feature of the far field is the meandering motion of the jet in 
combination with the appearance of large counter-rotating vortices alternating on 
both sides of the vertical plane of symmetry of the jet. 

According to the observations made in this study the mean velocity distribution 
in the jet cross-section in the near field is uniform in the z-direction, and the influence 
of the boundaries is limited to a thin layer close to these boundaries. In the middle 
field the velocity distribution in the z-direction is strongly non-uniform. Velocity 
maxima occur near the bounding surfaces. The far field is dominated by counter- 
rotating vortices, but the distribution of the mean velocity becomes again 
approximately uniform in the x-direction with only weak boundary influence. The 
location of the boundaries between near and middle field and middle and far field 
vary from one experiment to another. However, deviations from the values given 
above are found to be generally small. 

4. Mean flow properties 
Measurements of the u- and v-velocity component were conducted over a 

streamwise distance, f = 20 to f = 153 where 6 = x/B. Most of the measurements 
were performed using the set-up with the top glass plate in place. For the 
experiments with a free surface, a small glass plate of 40 mm diameter was installed 
in the light path in order to eliminate refraction problems due to the slightly wavy 
water surface. This plate was not immersed, but touched the water surface so that 
disturbances could be kept minimal. Measurements were made at  selected points in 
the cross-sectional plane a t  a given x, with the majority of measuring points on the 
midplane. Only a few selected mean flow properties are presented here (more details 
are given by Giger 1987). Unless especially mentioned, all data shown represent the 
midplane. 

Figure 6 ( a )  shows transverse distributions of the mean forward velocity U. The 
centreline velocity Urn and the velocity half-width b were chosen as local scaling 
parameters. The measurements presented in figure 6 (a)  cover the range from the near 
field to the end of the part of the far field in which measurements were taken, i.e. 
f' = 0.5G38.25. Although significant differences exist in the structure of the flow, the 
measurements suggest a self-similar velocity distribution all over the near, middle 
and far field, which can be approximated by Reichardt's solution 

U/Um = exp ( -Aq2), (1) 
where r j  = y/b is the dimensionless transverse coordinate. The numerical value for 
the constant is A = --In (0.5) = 0.693. Most of the other measurements known were 
conducted in the near field and show the same velocity distribution. The mean 
transverse velocity V for part of the data presented in figure 6 ( a )  is shown in figure 
6 ( b ) .  The distribution is approximately the same in the near and the far field. For 
comparison, the distribution of V ,  

exp(-Aq2)dy+rj exp (-Arj2) 

computed from the two-dimensional continuity equations is drawn as a solid line in 
figure 6 (b).  

Strong deviations from the expected values occur in the middle field. Figure 7 
shows two transverse profiles of the V-velocity components at 5' = 6 for H / B  = 8. 



596 T .  Dracos, M .  Giger and G. H .  Jirka 

(4 

1 .o 

0.8 

0.6 
U 
urn 
- 

0.4 

0.2 

0 

-0.2 I I I I I I 
0 0.5 1 .o 1.5 2.0 2.5 3.0 

(b) 11 

0.10 

-0.05 I I "  I I I I I 
0 0.5 1 .o 1.5 2.0 2.5 3.0 

11 
FIUURE 6. Transverse distribution of the mean (a) longitudinal and ( b )  transverse components of 
velocity, in the midplane of the jet, scaled by the mean centreline velocity Urn. The solid line in (a) 
represents equation ( l ) ,  the solid line in (b )  represents equation (2). 

One of the profibs was measured in the midplane, z / H  = 0, the other in a plane 
located at z / H  = -0.3 below the midplane. While in the midplane V is everywhere 
negative, and thus directed inwards, i.e. towards the centreplane, the V velocity 
below the midplane is positive in a range 0 < 7 < 3.0. At this level the direction of 
the flow is outwards. In the midplane the secondary currents transport slow ambient 
fluid towards the centreplane of the jet. The U component is consequently reduced. 
Near the confining boundaries fast fluid is transported from the centreplane 
outwards and the U component increases. This result is in agreement with the results 
of Foss & Jones (1968) shown in figure 6 of their publication. Figure 8 shows three 
long-exposure photographs of the same jet. The dye was injected near the bottom in 
the first, in the midplane in the second, and near the free surface in the third picture. 
The enhanced spreading both near the bottom and near the free surface suggests 
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FIGURE 8. Long-exposure photographs (25 s) of flow visualization in an experiment with 
H I B  = 36. (a)  dye injected near the bottom, z = -Ad; (b) dye injected in the midplane, z = 0; 
(c) dye injected near the free surface, z = Ad. 

that the secondary motions are induced primarily by the kinematic effect of any 
boundary and to a lesser extent by the nature of the boundary, i.e. whether it is solid 
or free. 

The effect of the secondary flow on the mean velocity in the midplane is evident 
in figure 9. Figure 9 ( a )  shows a distribution of the velocity ratio (U,/Um)2 along the 
jet axis for experiments with different depths H/B.  In the absence of secondary 
motion, i.e. for a truly self-similar jet, the velocity ratio would follow a straight line 

(U,/umr)2 = Cu (6-6,) = Cu (H/B) (S-63. (3) 
Owing to the secondary currents developing in the middle field, the velocity Urn is 
smaller than the nominal centreline velocity Urn, given by the straight line (equation 
(3)). In  this equation, t,, and g, respectively, indicate the position of a kinematic 
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FIGURE 9. (a) Square of the ratio of the exit velocity V, to the mean centreline velocity U, aa a 
function of 6.  The abscissa origin for each experiment is successively shifted by 40 units. Straight 
lines represent the nominal velocity U,,, equation (3). (b) Ratio of nominal mean centreline velocity 
U,,, equation (2) to the measured centreline velocity Urn as a function of ,$'. The influence of the 
secondary currents is apparent in the range 2 < 5' < 10. Symbols as in figure 3. 

HIB c, 5, 6: c, 6 c; 
4 0.182 6 1.50 0.100 6 1.50 
8 0.192 2 0.25 0.100 0 0 

12 0.205 3 0.25 0.106 3 0.25 
16 0.192 4 0.25 0.100 0 0 
36 0.192 9 0.25 0.095 0 0 

TABLE 1 
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virtual origin. The values of Ck, f and 5: for experiments with different depths H / B  
are listed in table 1. 

The region in which deviations of the centreline velocity Urn from its nominal value 
Urn, occur is associated with the secondary currents and thus scales with f' (figure 9b) .  
It appears between f' x 2 and f' z 10. The experiment with H / B  = 4 does not show 
any deviation of the centreline velocity from its nominal value in the middle field and 
the kinematic virtual origin is located at a greater distance from the orifice than in 
the other experiments. In the same experiment the centreline velocity in the far field 
becomes smaller than the nominal velocity given by (3), owing to the influence of skin 
friction at  the no-slip bounding surfaces (Giger et al. 1991). 

All jet quantities derived from the velocity Urn (the volume or momentum flux, for 
instance) show a behaviour similar to that illustrated in figure 9(b) .  The respective 
distributions are not shown here (see Giger 1987). Figure 3 ( b )  shows that the 
streamwise turbulence intensity relative to Urn increases to reach a maximum of 
nearly 0.3 at approximately gl = 6. Beyond that point the streamwise turbulent 
intensity decreases and levels out to a value of approximately 0.22. In  this regard, 
figure 9(b) suggests that the change of turbulence intensity, which in the range 
2 < gl < 10 increases by more than 30%, cannot be completely explained by the 
decrease of Urn by - 15%, owing to the secondary currents developing in this range. 
Secondary currents thus cause a net increase of the r.m.s. values of u' and v' in the 
midplane. In  the experiment with H / B  = 4, secondary currents do not develop and 
the turbulence intensity (u '~)+/U, ,  has a constant value of approximately 2.20 over 
the entire range of 5'. 

The development of the r.m.s. values of u' and v' are further analysed with the help 
of figure 10. In  figure lO(a) ,  ( U ' ~ ) ; / U ,  is plotted logarithmically against f ' .  
Measurements from the experiment with maximum depth, e.g. H / B  = 36, are 
omitted as they do not extend beyond f '=  5 .  Self-similarity of the turbulence 
intensity demands that the data should align along straight lines with -+ slope. This 
is the case, except for an initial range of flow establishment and for the region from 
about 5' x 6 to f' x 10. In this region the slope is nearly - 1. On the other hand, in 
the experiment with depth H / B  = 4, in which secondary flows do not develop, the 
slope is constant, equal to -4  for 5' > 5. 

A similar behaviour is observed in the plot of ( V ' ~ ) ~ / U ,  as a function of 5' (figure 
lob). However, in this case the slope of the straight lines is -a  and -a, respectively. 

In the range 0 < E' < 5,  the ratio (~") i / (u '~)+ is constant, close to unity. For 
f' 2 5, on the contrary, the ratio (v'z)i/(u'2)z increases proportionally to f'i. Note that, 
as shown in figure 3(b ) ,  beyond the region influenced by the secondary current, i.e. 
f' 10, the intensity (U'~))'/U,, becomes constant. The intensity (V'~)~/U,,, by 
contrast, continuously increases in the same region. 

In the range f' < 5 an isotropy of the turbulent fluctuations in the u- and v- 
directions is observed in the midplane. This is not necessarily the case for the w- 
component. In fact, it is the anisotropy of the turbulent fluctuations in the v- and w- 
directions occurring between the midplane and centreplane and especially between 
the latter and the bounding surfaces which are the cause for the secondary currents 
(Perkins 1970). 

The results presented suggest that the zone of flow establishment scales with B and 
that it can extend up to 40B. In the experiment with H/B = 4, x / B  = 40 corresponds 
to E' = 10. The relatively large positive shift of the geometric and kinematic virtual 
origins, e.g. 5;, = f;: = 1.5, and a long region of the flow establishment may be the 
reason why secondary currents did not develop in this experiment. 
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FIGURE 10. Double-logarithmic plots of the r.m.s.-values of the stream_wise and transverse 
velocities fluctuations scaled with V, as a function off‘. (a) (u”);/V,, ( b )  (v‘*$/V,. Symbols as in 
figure 3. 

The growth of the jet half-width measured in the midplane in experiments with 
different depths is shown in figure 11. The nominal half-width br of a self similar jet 
grows linearly with 2: 

br /B  = ‘b((-tb)> (4) 

or b r / H  = ‘b(C-&). (5 )  

Relative to this nominal behaviour the data show again slight deviations in the 
middle field. The values of c,, and (,,, &, respectively, are listed in table 1. The minimal 
half-width is about 94 % of its nominal value, followed by an overshoot up to 106 ‘YO. 
Beyond E‘ x 10, linear spreading is again approached. In the experiment with depth 
H/B = 4 no deviations from the nominal width b, occur over the whole range of 
observation. 
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FIGURE 11. Half-width b/B rn a function of 5. The abscissa origin for each experiment is 

successively shifted by 40 units. Symbols as in figure 3. 

5. The structure of the jet in the far field 
The structure of the jet in the far field is elucidated with the help of figure 12, which 

shows a series of 6 short exposure photographs taken in an experiment with 
H / B  = 4. In  addition to the dye added to the jet discharge, confetti was strewn on 
the water surface. The paths of the confetti during the exposure time of 1 s appear 
as bright lines on these photographs. These streaklines are short enough to give as 
an ensemble a representative picture of the instantaneous flow field. The most 
striking features in this visualization of the jet flow are a series of large-scale two- 
dimensional vortical structures. These vortices align alqng two rows, one on each side 
of the axis of the jet. The vortices in each row have the same direction of rotation 
and are counter-rotating and mostly staggered, relative to the other row. Between 
these two rows of vortices, jet fluid meanders a t  relatively high velocity. At the 
beginning of the far field, that is to say a t  E' k; 10, where oscillations of the jet are 
visually observed for the first time, the half-width b of the jet is nearly equal to the 
depth H .  The visual observations presented in figure 5 ,  in which sharp interfaces 
between dyed jet fluid and non-dyed ambient fluid extending from the bottom to the 
surface are visible, suggest that these structures are predominantly two-dimensional 
except in the vicinity of the bottom where the no-slip condition influences the flow. 
As will be shown below in the far-field the flow in the jet is strongly determined by 
these vortices and their interactions. 

A number of photographs taken at short-time intervals in an experiment with 
depth H / B  = 4 enable the number of vortices passing a number of stations located 
at different distances x / B  to be counted. The resulting frequency j', is given in figure 
13. Its dependence on x/B is given by the solid line in this figure, which corresponds 
to the relation . 

f, = 176(5)-9. 

f, thus fulfils the similarity requirements and can be scaled by local parameters like 
b, and U,, to give a constant Strouhal number St, = f,. b,/U,,,, = 0.07. 

The decrease of the frequency f, is caused by the decrease of the transport velocity 
of the vortical structures and by the reduction of their number by pairing. The latter 
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t = 6 s  r = 8 s  t =  1 0 s  
FIGURE 12. Sequence of 6 photographs of the dyed jet with confetti added a t  the water surface, 
H/B = 4. Exposures are 2 s apart. Pairing of vortical structures: A t  t = 4 s vortices 1 and 3 have 
paired, at t = 8 s vortices 4 and 6 as well as 5 and 7 have paired. 
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FIGURE 13. Passing frequency of ‘vortical structures’ as observed in figure 12 determined from 

a large number of photographs as a function of 5. Solid line: equation (7) .  
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can bc observed in the photographs presented in figure 12. The timestep between 
these photographs is 2 s. The ‘vortices’ observed in the first exposure are labelled 
1-8. I n  the second exposure (t  = 2 s) vortices 1 and 3 approach each other. Another 
2 s later (exposure 3) these two vortices merge to one designated by 1,3.  In  the fourth 
exposure ( t  = 6 s) vortices 4 and 6 as well as 5 and 7 approach each other. The pairing 
of vortices 4 and 6 on the left-hand side of the picture, and vortices 5 and 7 on the 
right-hand side of the picture is completed in the following two exposures ( t  = 8 and 
t = 10 s). 

The course of a vortex pairing observed in the present flow visualizations differs 
from the one observed in shear layers a t  low Reynolds numbers. This can be 
illustrated by following the pattern of pairing of vortices 4 and 6 shown in figure 12. 
I n  the timestep elapsed between t = 2.0 s and t = 4.0 s the two vortices have 
approached each other. A t  the same time vortex 6 has taken on an elongated form. 
Two seconds later the pairing is already completed. In  the following 2 s the new 
vortex 4, 6 changes only its form and exhibits a smaller aspect ratio. The same 
pattern is observed in the pairing of vortices 1 and 3 as well as 5 and 7, and is typical 
for the pairing of vortices in all experiments. The merging of the vortices occurs 
without previous rotation of the two vortices around a common axis as described by 
Winant & Browand (1974), Cantwell (1981) or Hussain (1986), for example. The 
picture observed in the present study resembles the process of tearing proposed by 
Moore & Saffman (1975), later observed by Dimotakis & Brown (1976) in a turbulent 
mixing layer a t  large Reynolds number. 

6. Development of quasi-two-dimensional turbulence in the far field 
The visual observations and, in particular, the two-dimensionality of the vortical 

structures are confirmed by the energy spectra computed from the time records of 
the velocity. Figure 14 shows some typical one-dimensional energy spectra of the 
turbulent fluctuations u’, v‘ of the longitudinal and transverse velocity components. 
The spectra are presented in non-dimensional form. Scaling parameters are in all 
cases the nominal centreline velocity Urn, determined from (3), and the nominal half- 
width b, determined from (4). The spectra in figures 14(a) and 14(c) are computed 
from measurements taken in an experiment with flow depth H/B = 16 a t  a distance 
of 5‘ = 2.6, 5.0 and 9.6, respectively. The first of these points of measurement is 
located near the beginning, the second near the centre, and the last near the end of 
the middle field. There is a distinct energy peak in the v’-spectra (figure 14c). Spectra 
measured in the near field of plane jets by other authors (Goldschmidt & Young 
1975) are similar to the ones presented in figures 14(a) and 14(c). A universal 
equilibrium range and an unequivocally distinguishable inertial subrange with a - 
wavenumber dependence, typical for a three-dimensional cascading turbulent flow, 
are observed a t  higher Strouhal numbers. The structure of turbulence and, in 
particular, its three-dimensional character are not significantly influenced by the 
secondary currents present in the middle field of the jet. 

Power spectra in the far field (figures 14b and 14d) behave quite differently. The 
spectra in figures 14(b) and 14(d) are from an experiment with flow depth H / B  = 4. 
The velocity measurements were taken a t  5‘ = 10.50, 20.00 and 38.25. The first of 
these loci is situated near the beginning of the far field. In  the middle field the non- 
dimensional maxima of the energy density of the spectra are nearly constant, 
suggesting an increase of the maximum energy density proportional to 5‘; in 
accordance with the similarity requirements. I n  the far field the maxima of the non- 

20 FLY 241 



604 T .  Dracos, M .  Giger and G.  H .  Jirka 

Sl = fb, u;: 
FIQURE 14. One-dimensional energy spectra of turbulent fluctuations of the streamwise and 
transverse velocity components. (a) u-Spectra: H/B = 16, near and middle field E' = 2.625, 5.00, 
9.5625. ( b )  u-Spectra: H/B = 4, far field E' = 10.50, 20.00, 38.25. (c) w-Spectra: for same conditions 
as (a) .  (d )  w-Spectra: for same conditions as ( b ) .  

dimensional energy density increase significantly faster with c.  At the same time, the 
peak around the maximum becomes more pronounced. In  addition, a range develops 
in which the energy transfer follows a - 3  wavenumber dependence. Such a 
wavenumber dependence is consistent with the development of quasi-two- 
dimensional turbulence characterized by an enstrophy cascade (Batchelor 1969). The 
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f (s-7 
FIGURE 15. One-dimensional energy spectra of the v-component from an experiment with 
HIB = 4. From right to left: E' = 10.50, f = 15.25, E' = 23.25, f = 30.75, f = 38.25. Solid circles 
represent the beginning and open circles the end of the - 3  range of the spectra. 

alleviation of the energy cascade in the quasi-two-dimensional part of the spectrum 
causes a depletion of the energy content in higher wavenumbers. At even larger 
wavenumbers the energy transfer gradually relaxes back to that for three- 
dimensional turbulence. This relaxation range seems to follow a - 1 wavenumber 
dependence (see also figure 15). 

The shapes of the spectra suggest that the energy extracted from the inertial 
subrange of the spectrum is injected at the location at which the enstrophy cascade 
begins and is transferred in an inverse energy cascade towards the peak, which 
increases in magnitude. 

The instability of plane laminar jets has been investigated by different authors 
(Sato 1960; Michalke & Schade 1963; Ikeda 1977). Cervantes (1981) remarks that the 
instability of turbulent jets can be treated in a similar way. Small-scale turbulence 
can be taken into account if an appropriate eddy-viscosity concept is adopted and 
mainly influences the growth of the amplitude of the most amplified mode. Here only 
an estimate of the most amplified mode is sought. Thus, following the analysis by 
Michalke & Schade (1963), the transverse velocity profile can be approximated by a 
trapezoidal distribution with U/Um = 1 for y / b  < 0.2 and U/Um = 1 - (y/b-O.2)/1.5 
for 0.2 < y / b  < 1.7. The form factor, i.e. the slope of the profile, is 8 = 0.67. It follows 
that the wavenumber of the most amplified disturbance is a z 0.75 (1.5b)-l, and the 
corresponding wavelength is h E 2.0b. From numerical simulations it is known that 

20-2 
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FIGURE 16. Double-logarithmic plot of the change of the Strouhal-number a t  the beginning St, 

of the -3  slope range of the spectra as a function of 5'. 0, H / B  = 4 ;  A, HIB = 8. 

the size of the vortical structures is approximately equal to ;A, or in this case, equal 
to b. This estimate is in good agreement with the size of the vortices observed visually 
in the present experiments. These considerations are based on the mean flow profiIe 
of the jet, which is inherently unstable. Vortical structures due to instability can thus 
form a t  any distance E' from the orifice. 

At distances of (g-g) = 10 the halfwidth b of the jet is equal to the depth H .  
Beyond (6-g) x 10 the size of such structures becomes larger than H and they can 
only exist if their axis is and remains perpendicular to the midplane. Such vortical 
structures have parallel axes and the same sense of rotation and thus increase in size 
by pairing. This kinematic constraint seems to be the cause for the development of 
the observed vortical structures at distances larger than 1OH from the geometric 
virtual origin of the jet and consequently of the appearance of a quasi-two- 
dimensional range in the energy spectra in the far field. 

To study the development of the two-dimensional range of the spectra with 
distance E' a number of energy spectra of the v-component were computed in the 
range 10 < 5' < 40 with the use of data from experiments with depth H / B  = 4 and 
8. Part of the v-spectra is presented in non-scaled form in figure 15. The beginning 
and end of the - 3 slope range, as well as the corresponding frequencies f, and f,, were 
determined in each spectrum. For this purpose the following procedure was used: 
The start frequency fb was determined as the intersection of a constant plateau line 
and a - 3  slope line fitted to each spectrum. In a similar way, the end frequency f, 
was found as the intersection of a - 3 slope line and a - 1 slope line. These points are 
shown in figure 15 as solid circles fort, and as empty circles fort,, respectively. The 
resulting Strouhal numbers stb and St, were then computed as mentioned earlier by 
using the local nominal centreline velocity Urn, and the nominal width b, as scaling 
parameters. As shown in figure 16, the Strouhal number stb increases proportionally 
to @. This corresponds to a decrease of the wavenumber k ,  proportionally to g-a. 
The proportionality constants are 0.032 for experiments with depth H / B  = 4 and 
0.036 for experiments with depth H / B  = 8.  

The frequency f,, corresponding to the end of the -3  slope in the spectra, is 



Plane turbulent jets in a bounded Jluid layer 

~ 

-0.2 0 -  

607 

- \ 11 
: 

-0.4 I I 1 I I I I I I I I 
0 20 40 60 80 100 

76;' Urn, 

FIGURE 17. Autocorrelation function R,, ( O , O ,  0,7) .  For HIB = 16, 5' = 2.625, no oscillation ; 
for H/B = 4, E' = 38.25, quasi-periodic oscillations. 

independent of 5' for experiments at a given depth, e.g. f, = 1 s-' for H / B  = 4 and 
fe = 0.4 s-l for H / B  = 8. This implies a 5'; dependence of the Strouhal number St,. 
The corresponding proportionality factors are 0.0028 and 0.0036, respectively. 

The inverse of the Strouhal number can also be interpreted as a non-dimensional 
wavelength A* = A / b  with A = Um,/f. The ratio A,/A, = St,/St, increases linearly 
with 5'. The location at  which &/he becomes 1 indicates the beginning of the 
development of a -3 range in the spectra. This location is found to be f' = 11.51 for 
the experiment with H / B  = 4 and 5' = 10 for the one with H / B  = 8. The difference 
in location is practically identical to the difference in the location of the geometric 
virtual origin for these two depths. 

One can thus write: st, = C1(g-g)i, (7) 
s t ,  = c,(g - g;$, (8) 

valid for (g-g)  > 10. 
The numerical values C.  = 0.036 and C,  = 0.0036 were determined from the 

present experiments. Notice that for g-6;  = 10 these Strouhal numbers become 
St, = S t ,  = 0.11, which is in good agreement with the Strouhal number of 0.1 
determined by Michalke & Schade (1963) for the frequency of the most amplified 
disturbance. 

The large-scale motions appearing in the far field give rise to quasi-periodic 
oscillations in the autocorrelation function R,,, which do not appear in such 
functions in the near and middle field. Figure 17 shows the autocorrelation functions 
computed for measuring points on the axis of the jet at  5' = 2.625, H / B  = 16 and 
5' = 38.25, H / B  = 4. The lag-time 7 scaled with Urn, and b, corresponds to the inverse 
of the Strouhal number appearing in the spectra. 

From the zero crossings of the oscillating parts of the autocorrelation function one 
can estimate a mean period of oscillation and the associated Strouhal number, e.g. 
St = 0.0824. This Strouhal number is in excellent agreement with the Strouhal 
number S t ,  at the peak of the energy spectrum, which in this case is estimated to be 
St, x 0.085 (see figure 14d) ,  and is related to the quasi-periodic meandering motion 
of the jet in the far field. 
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FIQURE 18. Energy and covariance spectra from middle and far field. ( a )  Energy spectrum, v- 
component, H/B = 16,f = 3.00, (middle field) 7' = 0.7. ( b )  Covariance spectrum a t  same location. 
( e )  Energy spectrum, v-component, H/B = 4, 5' = 38.25, (far field) 7' = 0.7. ( d )  Covariance 
spectrum a t  same location. 

The Eulerian integral lateral lengthscale A ,  can be estimated by integration 
of the autocorrelation function up to the first zero crossing. If scaled by b,  one gets 
A J b  w 0.727 for 5 = 2.625 in the beginning of the middle field, and Ae,fb = 1.567 
for c = 38.25 in the far field. The value A e / b  w 0.727 is of the order of magnitude 
given by Goldschmidt & Bradshaw (1981). Owing to the formation and pairing of the 
large vortical structures in the far field this length becomes roughly twice as large. 

Another important feature of the coherent vortical structures in the far field is the 
production of shear in the braids between the vortices. It is believed that most of the 
turbulent shear stems from these braids. For this purpose, the covariance spectrum 
was computed a t  point = 3.0, 7 = 0.7 in an experiment with depth H/B = 16 and 
a t  point c = 38.25, r = 0.7 in an experiment with H / B  = 4. At 7 = 0.7 the profile of 
the mean velocity has a maximum slope, and the turbulent shear stress attains its 
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maximum. The cospectra are shown in non-dimensional form in figures 18(b) and 
18 (d ) .  For comparison, the power spectra of the lateral velocity fluctuations v' a t  the 
same locations are given in figures 18(a) and lS(c) .  

At f' = 3 the spectra correspond to  spectra in the near field. At f;' = 38.25 the 
quasi- two-dimensional turbulence is well developed. The power spectrum at  this 
point, plotted in figure 18 ( c ) ,  has a range with a - 3 slope extending approximately 
from the Strouhal number St, x 0.21 to St, z 0.64. A distinct peak appears a t  
St, x 0.08. The corresponding covariance spectrum is presented in figure 18 (d).  
Unexpectedly, this spectrum has a positive part in the range 0.15 < St,, c 0.375 and 
its peak occurs a t  St,, e 0.041, e.g. a t  about half the frequency of the peak in the 
power spectrum. 

The frequencyf,, at which vortices pass the measurement location, is given by (6). 
The average frequency for the passage of a pair of vortices can be computed from 

fp = -Av. dfv 
dx (9) 

A, is the average distance in the x-direction between the centres of the vortices in a 
row. At the point at which the spectra were determined, A, = 0.7 m was found from 
the analysis of a large number of photos. Remembering that the Strouhal number is 
the inverse of a wavelength scaled by b,, we get from (7) for f;' = 38.25, A, = 0.74 m, 
which is in good agreement with the visual determination, and shows that this 
wavelength is a measure for the average spacing of the centre of the vortices in a row. 
The resulting pairing frequency St,, is 0.042 or 0.044, respectively, which is in good 
agreement with St,, = 0.041. The reduction of the peak frequency of the covariance 
spectrum to half of the frequency a t  which the energy peak occurs is thus related to  
vortex pairing. This conclusion is supported by the comparison with the covariance 
spectrum a t  f = 3 , ~  = 0.7, shown in figure 18(b). As expected, this spectrum has no 
positive part and peaks a t  St,, !a 0.9, i.e. at nearly the same location a t  which the 
power spectrum (figure 18a) has its maximum. If we assume, supported by these 
observations, that  in the far field the frequencies in the cospectrum are reduced by 
a factor of 0.5, the positive part of the cospectrum in figure 1 8 ( d )  is related to the 
extraction of energy in the quasi-two-dimensional range of the power spectrum 
presented in figure 18(c). 

7. Intermittency 
Intermittency is closely related to  entrainment and mixing of ambient irrotational 

fluid (Townsend 1976). The signal of an LDA anemometer taken a t  a point close to  
the lateral boundary of the jet shows periods of turbulent flow with fluctuations in 
a broad frequency range and periods of non-turbulent flow. The latter show only 
low-frequency variations of the velocity induced by the large eddies mainly 
responsible for the entrainment of ambient non-turbulent fluid. The intermittency 
factor y is defined as 

y = lim k J o T l ( t )  dt. (10) 
T+CO 

I ( t )  is an intermittency function with the value 1 ,  where the signal is turbulent, and 
0, where the signal is non-turbulent. 

The procedure used to determine the intermittency function is similar to the one 
used by Heskestad (1965). The LDA signal is first low-pass filtered. This allows the 
decomposition of the LDA signal U(t) in a low-frequency non-turbulent part C ( t )  and 
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FIQURE 19. Intermittency factor distribution in transverse direction : ( a )  In the range 5' c 3 and 
9 c 5' < 12. Full-line: Gaussian distribution with y = 0.5, a t  = 1.68, sy = 0.36. ( b )  In  the range 
3 < 5' < 9 (middle field). Full lines: long-normal distributions. 

a high-frequency 'turbulent ' part u"(t). The square of the latter is used as a detection 
function and its comparison with a threshold value ut; allows the determination of 
the intermittency function. To eliminate the ' non-turbulent ' spots artificially 
introduced a t  the zero crossings of the u" function a minimum duration t,, of the non- 
turbulent sequence is required. If the duration is shorter than t,,, the sequence is 
considered to be part of the adjacent turbulent sequences, which are thus connected. 

This procedure requires the determination of three parameters, the window width 
of the filter T,, the threshold ut: and the minimum duration t,, of non-turbulent 
sequences. The first of these parameters was determined by inspection and the last 
two by a trial and error method. (For more details see Giger 1987.) For the data 
available in the present study this approach proved to be more reliable and effective 
than those based on the use of derivatives. 
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The transverse distribution of the intermittency factor in the near field is wider 
than the one of Davies, Keffer & Baines (1975), but in good agreement with that of 
Heskestad (1965) and Gutmark & Wygnanski (1976). Corrsin & Kistler (1954) 
predict that this distribution is nearly Gaussian and give the relation 

for its standard deviation, written here in non-dimensional form. A ,  is the 
longitudinal Lagrangian lengthscale. If all parameters on the right-hand side are 
self-similar, sy(() = g y ( x ) / b  is a constant. 

In the range E' < 3, i.e. the near field, and in the range 9 < 5' < 12 of the far field 
the distribution of y is similar and nearly Gaussian. Intermittency distributions 
determined from eight measurements at  three different depths H ,  covering these two 
ranges, are shown in figure 19(a). The full line in this figure is a Gaussian distribution 
with y = 0.5 located at qo,5 = 1.68 and a standard deviation sy = 0.36. The deviations 
of the corresponding parameters of Gaussian distributions fitted to the individual 
results of the eight experiments from the values given above are small, e.g. kO.054 
for qo.5 and k0.022 for sy. 

In fact, the location of the y = 0.5 point does not change for E' up to about 20. For 
& > 20 the distance qo.5 of the y = 0.5 point from the axis of the jet decreases 
proportionally to g-: (figure 20). This decrease apparently starts when the vortical 
structures are completely developed. The standard deviation ay of the y-distribution 
in transverse direction already starts increasing at  & x 10. As a result of the self- 
similarity of the velocity distribution in the far field both b an AL are proportional 
to x in this region. In  this case, (A ,x /b2 ) i  is constant and the change of sy depends, 
according to ( l l ) ,  only on the change of (v'")t/U,. In the far field, Urn is proportional 
to 2-i. From figure 10(b) it  follows that (v'")' is proportional to x-f. sy should thus 
increase proportionally to the power of 5'. As shown in figure 20, this is indeed the 
case. The increase of the standard deviation is related only to the geometric 
similarity in the far field and to the increase of the r.m.s. of the fluctuations of the 
lateral component of the velocity. The influence of the vortical structures and of the 

a ( x ) / b  = [ ( P ) ~ / U m ] ( 2 A L E / b ) ~  (11) 



612 T. Dracos, M .  Giger and G. H .  Jirka 

1 A 0  
1 .o 

0.8 1 
t 

0 i " I  0 

1 
0.1 ' I I 1 I I I I I 

0 10 20 30 40 

5' 
FIGURE 21. Ratio of turbulent to total discharge as a function of c. Symbols as in figure 3 

quasi-two-dimensional turbulence is an indirect one and follows from the influence of 
the latter on the v-component of the velocity. 

and sy From the results presented in figure 20 the empirical equations relating 
to 5' are found to be )70,51 = 7.5 c-: valid for 5' > 20, (12) 

s Y = 25'; valid for c > 10. (13) 
I n  the middle field, the distribution of y in the transverse direction becomes skewed 
with long tails towards increasing 171 values. Figure 19(b) shows this distribution at 
three locations in the range 5 < $' < 7 .  The full lines correspond to lognormal 
distributions and fit the data satisfactorily. A significant shift of the y-distributions 
away from the axis of the jet is observed in this range. The location of y = 0.5 is 
namely 70.5 = 1.85 a t  5' = 5, r/o,5 = 2.05 at 6 = 6 and 70.5 = 1.95 a t  c = 7 .  

The intermittency function I ( t )  also allows to determine the long time-average of 
the volume flux of turbulent fluid through a cross-section of the jet a t  a given 
position 5' along its axis: 

Qt(5') = rm W', 7) d i .  (14) 
-m 

The local average of the turbulent part of the velocity U, can be computed by using 
(l) ,  (12) and (13) from 

The results of this calculation are presented in figure 21, in which the ratio Qt/Q is 
plotted as a function of c. Q is the total volume flux as determined from the profiles 
of the mean velocity. The deviation of the ratio Qt/Q from unity indicates which part 
of the volume flux through a cross-section of a plane jet consists, on the average, of 
non-mixed entrained ambient fluid. In the near field the ratio Q,/Q is somewhat 
smaller than 1 in all experiments with approximately 5 YO of the volume flux being 
non-turbulent. The contribution to non-turbulent flux comes mainly from the edges 
of the jet. Secondary currents seem to increase the transverse mixing efficiency in the 
midplane during their development. At 5' = 6, where they are best developed, the 
ratio Q,/Q reaches its maximum of 0.99. This is also consistent with the net increase 
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of turbulence intensity in this range shown in figure 10. In the range H < 6' < 10, 
where the secondary currents start decaying, QJQ decreases and reaches its initial 
value at  E' x 10. 

In the far field the ratio decreases monotonically, indicating that a considerable 
part (up to 20% at  f;' = 38.25) of the entrained fluid did not lose its irrotationality. 
The results of the intermittency analysis suggest that the development of the quasi- 
two-dimensional turbulence is the cause of the observed decrease of mixing efficiency 
in the far field. 

9. Summary and conclusions 
Plane turbulent jets discharging in shallow environment are studied up to a 

distance of approximately 40 times the depth of the receiving fluid body. The 
geometric and kinematic conditions imposed by the bounding surfaces influence the 
development of the jet in a distinct way. After a distance of about twice the depth 
H ,  and if the flow is well established, secondary currents start to develop. These 
currents induce weak helical flows with axes essentially parallel to the axis of the jet. 
Although too weak, these currents strongly influence the mean velocity distribution 
in the cross-section of the jet. The mean velocity distribution becomes three- 
dimensional, and this must be taken into account when balance equations are 
evaluated. The secondary currents also lead to an enhancement of turbulence and an 
increase of the mixing efficiency of fluid entrained by the jet. The maximum of the 
influence of the secondary currents is found at  f;' x 6, where f;' = x / H .  From that 
point the influence of these currents decreases and practically vanishes a t  t;' x 10. 
The manner by which the secondary currents influence turbulence, intermittency 
and mixing is not yet completely understood and deserves further investigation. 

The present study shows that two-dimensional large-amplitude quasi-periodic 
motions dominate the flow in the region beyond t;' x 10. However, although the 
mean velocity profile and the spreading angle of the jet do not differ from the ones 
in the near field, e.g. for f;' < 2, and are in accordance with the self-similarity of the 
jet, the structure of the flow undergoes a thorough change. Vorticity associated with 
the energy containing eddies aligns in a direction perpendicular to the bounding 
surfaces, giving rise to large-scale vortical coherent structures. The main stream in 
the jet appears to meander between these counter-rotating vortical structures, which 
grow in size with t;' by pairing. The power spectra of turbulence start developing a 
range of quasi-two-dimensional turbulence, which initiates a t  the vicinity of the 
wavenumber corresponding to the beginning of the inertial subrange, and spreads 
towards lower wavenumbers with increasing t;'. Nevertheless, the turbulence 
intensity of the u-component is constant in this region and fulfils similarity. The 
large structure behaviour produces an anisotropy of the r.m.s. values of u' and v'. The 
intermittency is strongly influenced by the large-scale structures of quasi- two- 
dimensional turbulence and so is the mixing efficiency of the jet. The latter is 
significantly reduced. 
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